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ABSTRACT 

Kinetic data on the oxidation and oxygen chemical diffusion of uranium-plutonium 
oxides is important in assessing the chemical behaviour of the oxide. The oxidation of 

uranium-plutonium oxides, both hypostoichiometric [(U,Pu)O,_,] and hyperstoichiometric 
[(U,Pu)O,+,], with varying plutonium content, was studied by non-isothermal methods of 
thermogravimetry. The kinetics of the oxidation were found to be controlled by oxygen 
chemical diffusion, with activation energies in the range 7- 12 kcal mole-’ for (U, Pu)O,_,, 

and 15-19 kcal mole-’ for (U, Pu)O,+,. The effect of variation of plutonium content on the 

kinetics was negligible. 

INTRODUCTION 

Uranium-plutonium oxide (MO, + x, where M = U + Pu) exhibits signifi- 
cant non-stoichiometry due to the multiplicity of the oxidation states of 
uranium and plutonium. The oxygen-to-metal ratio (O/M) of the oxide 
plays an important role in the chemical behaviour of the oxide since changes 
in O/M can lead to variations in the oxygen chemical potential (AC/O,), 
and in fact considerable changes in O/M can occur during fabrication, 

storage or irradiation. 
The variations in O/M are essentially associated with oxygen diffusion, 

since cation diffusion rates are very low. Kinetic data on the oxidation and 
oxygen chemical diffusion of (U,Pu)O, + x of varying plutonium content are 
lacking, and it is only recently that some work has been reported using 
thermogravimetry and dilatometry [l-4]. 

Although isothermal methods are simple they are time consuming; also, 
when the amount of reactant material available is limited, it is desirable to 
obtain maximum information from a single kinetic experiment. This has led 
to considerable work on the development of methods based on non-isother- 
mal and quasi-isothermal experiments [5,6]. In this paper, we report on the 
kinetics of the oxidation of 

U, -,Pu,% --j U, --yPuyOz+x 

0040-603 l/83/$03.00 0 1983 Elsevier Science Publishers B.V. 



154 

( y = 0.05, 0.3 or 0.75) under non-isothermal and quasi-isothermal condi- 
tions. 

EXPERIMENTAL 

The samples used were sintered uranium-plutonium mixed oxide pellets, 
4 mm in diameter. Thermogravimetric analyses of the samples were carried 
out using a Mettler thermoanalyser with a balance precision of +O.Ol mg 
and a programmable temperature control giving the temperature within 
f0.5”C of the set value. The oxides were equilibrated in an atmosphere of 
moist argon/hydrogen at 800°C to convert them to MO,,,, [7] before being 
heated at the desired rate of heating up to 1000°C. For quasi-isothermal 
experiments, the sample was heated at the rate of 4”.C min- ’ until rate of 
weight gain was significant and then alternate isothermals and polythermals 
were run keeping the limits of dw/dt manually in the desired range. 

RESULTS AND DISCUSSION 

The method followed for non-isothermal kinetics was that of Satava and 
Skvara [8]. The form of f(a) used was (l-a) ln( 1-a) + (Y. This form is 
recommended for diffusion control as the rate-determining step for cylindri- 
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Fig. 1. Non-isothermal kinetic curve-fit for U, _ Pu,,O,_, + U,_,PU,,O~,~~. (a) .Y = 0.3. 
E=ll kcal mole- ‘; (b) y = 0.75, E = 7 kcal mole -Y . 
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cal specimens and has been used by us in our earlier work on the isothermal 

oxidation of MO,_, to MO,,,. Values of log[p(x)] were calculated for 

activation energies from 5 kcal mole-’ up to 30 kcal mole-’ in steps of 2 
kcal [5] for the temperature range 500-1000 K, and plotted against T for 
various values of E on transparent paper. Experimental (Y values were 
obtained from the weight gain, X,/X,, where X, = the quantity of oxygen 

diffused into the pellet in time t, and X, = the corresponding amount after 
infinite time. Values of (Y were converted to log[f( CY)] for the chosen function 
and were plotted against experimental T values using the same scales used 
for -log[p(x)] vs. T plots. The transparent plot is superimposed with the T 

scales, matched, and the two curves are moved relative to one another in the 
y direction until the - log[f( CX)] - T curve matches one of the - log[p( x)] - T 

curves. The displacement in the Y scales required for matching is the value 
of B in the expression 

log[f( cy)] - log(p( x)) = log% = B 
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Fig. 2. Non-isothermal kinetic curve-fit for U, -,,Pu,Oz~oO + U, -yPu,,02+x. (a) 
E = 17 kcal mole-‘; (b) y = 0.3, E = 19 kcal mole-‘; (c)y = 0.75, E = 19 kcal mole Y,= 0.05. 
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TABLE 1 

Kinetic data on (U, Pu)O, * x oxidation by non-isothermal TG 

Composition Initial Initial Heating rate Activation B logA 

O/M wt. (g) (“C min-‘) energy 
(kcal mole-‘) 

U,.,,Pu 0.75 0 2-x 1.935 1.2402 25 7 1.84 2.09 

u0.7p~0.302-x 1.964 0.8506 10 11 3.84 0.68 

uo.25pu 0.75 0 2+x 2.00 0.8218 6 19 6.86 1.88 

uo.7p~o.302+x 2.00 0.225 10 19 6.8 2.04 

Uo.,,Pu 0.05 0 2+x 2.00 0.90 1 6 17 6.64 1.71 

where + = rate of heating employed. Once B and E are known, the value of 
A can be calculated. 

This method was first attempted for the oxidation of MO,_, to MO,.,, 
with [Pu]/[U + Pu] = 0.75 and 0.3 for which activation energy data have 
been reported by us earlier using isothermal methods. Figure 1 shows plots 
of -log[p( x)] vs. T calculated for activation energies of 7 and 11 
kcal mole-‘. The points shown in the figure represent values of - log[f( a)] 
vs. T obtained by us for the oxidation of MO,_, to MO,.,,. The curve-fits 
show an activation energy of 7 kcal mole-’ for the oxidation of 
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Fig. 3. Quasi-isothermal curves for U,,,, Pu,.,, O,,,, ---) U,,,, Pu,.,, Oz+x. 
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TABLE 2 

Activation energy data on U, _vPu,O,_, 

Diam. of Y Method Temp. Activation Ref. 
cylindrical range energy 
pellets (mm) (K) (kcal mole-‘) 

6 1 Isothermal dilatometry 700-1300 11 I 
and TG 

4 0.75 Isothermal TG 800- 1300 7 4 

Non-isothermal TG 500-1000 7 Present work 
4 0.3 Isothermal TG 800-1300 12 4 

Non-isothermal TG 500-1000 11 Present work 

6 0.2 Isothermal dilatometry 900-1300 12 2 

5 0.2 Isothermal TG 1373-1673 16 3 

ucmpu ,,75O2_X and 11 kcal mole-’ for the oxidation of U0~7Pu,,302_X to 

MO2.00, and these values are in excellent agreement with our earlier reported 
values of 7.4 and 12 k cal mole-’ obtained by isothermal methods, thereby 
showing the applicability of the non-isothermal method. 

This method was followed for the oxidation of MO,,,, to MO,,, in air 
with [Pu]/[U + Pu] = 0.75, 0.3 and 0.05, and the curve-fits obtained are 
shown in Fig. 2. The curves represent - log[p( x)] values as a function of T 
for activation energies of 19, 19 and 17 kcal mole-‘. The shaded points on 
the curves show log[f( a)] va ues as a function of T obtained from experimen- 1 
tal a-T data for the three compositions. 

Table 1 gives complete data on composition, initial O/M of the sample, 
initial weight, rate of heating, activation energy and log A values obtained. 
All log A values, except that of Pu,,~U~~,O~_~ oxidation, are similar. 

The quasi-isothermal method has been considered to give more accurate 
kinetic data since the reactions take place under conditions close to equi- 
librium [6]. Figure 3 shows the quasi-isothermal oxidation of U,,,,Pu,,,,O,,,, 
in air. The plots show variations of temperature, weight and dw/dt vs. time. 

TABLE 3 

Activation energy data on U, _ ,Pu ,,O2+x 

Diam. of Y Method 
cylindrical 
pellets (mm) 

0.75 Non-isothermal TG 
Quasi-isothermal TG 

0.3 Non-isothermal TG 
0.2 Isothermal TG 
0.05 Non-isothermal TG 

Temp. Activation Ref. 
range energy 

(K) (kcal mole- ‘) 

500-1000 19 Present work 
500- 800 15 Present work 
500-1000 19 Present work 

1173-1823 17 3 
500-1000 17 Present work 
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The two limits of dw/dt chosen were 0.03 mg min- ’ and 0.05 mg min- ’ and 
the rate of heating employed was 4°C min - ‘. The average activation energy 
was obtained from the expression 

where C is a constant depending on the limits of dw/dt used, and T, and T2 
are the absolute temperatures at the two succeeding steps. The average 
activation energy obtained was 15 f 2 kcal mole-’ as compared to 19 f 2 
kcal mole-’ obtained by the non-isothermal method. This method, however, 
was not attempted for the other two compositions since the dw/d t limits 
had to be controlled manually in our experiments and it was difficult to 
avoid overshooting of temperature. 

Tables 2 and 3 give activation energy data obtained by us as well as the 
data of others for the various compositions for MO,_, and MO,,,, respec- 
tively. The following conclusions can be arrived at: 

(1) the activation energy for the oxidation of MO,_, or MO,,, is not 
significantly dependent on plutonium content; 

(2) the activation energy for the oxidation of MO,_,, which involves 
filling up of oxygen vacancies, is in the range 7- 11 kcal mole-’ whereas the 
activation energy for the oxidation of M02+,, which involves oxygen inter- 
stitials, is in the range 15-19 kcal mole-‘; 

(3) the data obtained by us on the oxidation of MO,,, is comparable 
with the oxygen chemical diffusion data on MO, +x already reported in the 
literature. Thus, Bayoglu and Lorenzelli [2] report activation energy of 12 
kcal mole- ’ for oxygen chemical diffusion in (U,,,Pu,,)O,_,. Sari [3] 
reports the relationship of oxygen chemical diffusion with temperature for 

wcl.*p%.2P2+x as 

logD= -T- . 3780 2 18 

which gives an activation energy of 17 kcal mole-’ for oxygen chemical 
diffusion; 

(4) these conclusions indicate that the oxidation of MO,_, to MO,, and 

MO2.00 to M02+x is controlled by oxygen chemical diffusion; 
(5) the results show that conventional non-isothermal methods of thermo- 

gravimetry can be used with advantage to obtain reliable data on oxygen 
chemical diffusion. 
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